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Images from Kendall and Gal, "What uncertainties do we need in Bayesian deep learning for computer vision?”, NeurlPS 2017.



Images from Besnier et al., "Learning Uncertainty For Safety-Oriented Semantic Segmentation In Autonomous Driving”, ICIP 2021.
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p(y™ | x*, D) = J p(y™ [ x*, w) p(w|D) dw

\\4



p(y*[x*,D) = | p(y*|x*, w) p(w|D) dw

W

- trye function
« observations
- predictive mean
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Model Definition




Data model

y ~p (y|x,W1,...,WL)

Assume NNs are fully-connected,
feedforward, unless stated otherwise.



Data model

y ~p (y|x,W1,...,WL)

Assume NNs are fully-connected,
feedforward, unless stated otherwise.

-or real-valued regression...

y ~ N (//i =f(X§W1»W29 W3)»‘7§)



Data model

y ~p (y|x,W1,...,WL)

Assume NNs are fully-connected,
feedforward, unless stated otherwise.

For classification...

y ~ Categorical (JZ' =f(x; W, W,, W3))



Data model

y ~p (y|x,W1,...,WL)



Prior per weignt

W ~ p(W)

WEIGHT MATRIX



Prior per weignt
w ~ N(0, ¢?)

WEIGHT MATRIX



Prior per layer

W, ~ P(Wz)

WEIGHT MATRIX



Prior per layer

WEIGHT MATRIX



Prior per layer

WEIGHT MATRIX

Size: (Dz_1 T D1)2



Joint prior
Wi, .o W ~p (W, ., W)

WEIGHT MATRIX WEIGHT MATRIX WEIGHT MATRIX



Joint prior
Wi, .o W ~p (W, ., W)

WEIGHT MATRIX WEIGHT MATRIX WEIGHT MATRIX




Joint prior
Wi, .o W ~p (W, ., W)

Size: (# total weights)?



Posterior

P (Wl,...,WL\y,x) =



Posterior

p(Wl,...,WL\y,x) =

p(ylIx Wy, ... W,) TI._ p(W)
p(ylx)



Posterior

p(Wl,...,WL\y,x) =

p(ylIx Wy, ... W,) TI._ p(W)
p(ylx)



Posterior

p (Wi, ., W |y, x) =

p (Y1 Wi ... W) TI,_,p(W)

J p(y [ %, Wy.... W) [[pw) dw,.....w,
Wi,..., W, l



Posterior Predictive

p(y™ | x*,y,x) =

J p(y* | x*, W, ..., W) p(Wq, ..., W, |y,x) dW,, ..., W,
Wi,...,\W,



p(y™ | x*, D)
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w ~ N(0, 6% = 5)
oo ~ Gamma (1/2, 1)

y ~ N (/4 =f(x;W1,W2, W3)»‘7§)
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Bayesian Deep Learning:
Priors

Eric Nalisnick




Hf: 1 p(Wl)

Garbage in: arbitrary priors
Garbage out: uncontrollable error bars

Michael |I. Jordan, MLSS (2017)




Normal Prior

p(W)

WEIGHT MATRIX



Normal Prior

As NN becomes infinitely wide, it converges
to a Gaussian process

w ~ N(0, ¢*/H)

Prior _ Pasterior Prediction with Uncertainty
3 1 1 2.0 1 1 1 1.5 1 1 1
;/—\" - (=4 A\
21 Ve ~- \ AR\ 1 15 \ 1.CF - <
- ¢ A F 4 N \ / N\
\V -' \ ) \.‘ \“ N ." ¢ o \ T
\ | 1| /1 R 10F . | i ¢ \ ”~ '
\. 17N \ /) S o K \ { o~ A - K \
| SR \ N A » 0.5}/ \ . 4
v ‘\ \ S Y FO0N AN y aral / \ /
, "v' \ 4 ;! VR 0.5 / \\ \ 'l e \ ; p
v \/ ! ,\ \ - ) v A ¢ \\ "
o / . \ | \
% OF ~ \/ _,\\ ?x\——', \ Y S \ ,‘/ \ ‘\‘,. f - = 0.0} \'\ / -
e /. 5\ i\ w. \
A \ # Yo A 0.0 av. i ,’:, - a /
!\ \ W \ / - ) !
-1k <') \ \ «:" AN\ \ YA \\—* / ,/ =03}k N\ f -
=N \ b N/ ) =-D.af "N\ ¢ - N J
\ \ P \ N 7 ' . \ e /
v\ A/ \ i / \ N\ j —
\ "/ SN / ~ -
—2 \ \ o~ S \ [} _'l i A _1 U
\\ — / . I~ |
3 1 1 1.5 A A 1 1.5 A A 1
0 2 - o 8 10 0 2 - o g 10 0 Z - 6 8 10
xr v £x

https://en.wikipedia.org/wiki/Gaussian process#/media/File:Gaussian Process Regression.png



Normal Prior

As NN becomes infinitely wide, it converges
to a Gaussian process

w ~ N(0, ¢*/H)

"With Gaussian priors the contributions of individual
units are all negligible, and consequently, these units
do not represent ‘hidden features’ that capture
Important aspects of the data” [Neal, 1995]



Normal Prior

As NN becomes infinitely wide, it converges
to a Gaussian process
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Multivariate Normal




Multivariate Normal




Multivariate Normal




Multivariate Normal

h,

IWZ




Hierarchical Priors

T ~ p(7)
W ~ p(W|7)



Hierarchical Priors

T ~ p(7)
w ~ N(0, 77



Hierarchical Priors: Structure

T, ~ p(7)
] ™~ N(Oa Tiz)

p,

W;

D,

| Indexes rows




Hierarchical Priors: Structure

T, ~ p(7)
2
D, MacKay, 1994

‘Automatic Relevance Determination”




Hierarchical Priors: Heavy-lalls

> ~ T Ya, B
w ~ N(0, 77

t(W) = [ N(w;0,7%) I'"'(z%; a, B) dr



Hierarchical Priors: Heavy-lalls

77 ~ Cauchy™ (o)

. w ~ N(0, 7°)




Hierarchical Priors: Heavy-lalls

= 7 == Horseshoe
7 Laplacian
= *= Flat

Posterior Mean




Hierarchical Priors: Heavy-lalls

=7 == Horseshoe
" Laplacian
= = Flat

Forget regularization: "bounded Influence”

I

Posterio




Hierarchical Priors: Heavy-lalls

Infinitely wide NN no longer converges to a
Gaussian process; instead a Jump Process.

Studemt-L Prior, H=10 - Student-t Prior, H=1000 15 Student-t Prior, H=100,000
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Discrete Priors
w ~ Bernoulli(x)

Interesting due to their computational
efficiency [soudry et al., 2014] and biological
plausibility [Baldassi et al., 2007].

But no access to gradients.



Other Architectures: ResNets

-

skip connection




Other Architectures: ResNets

di-1

di-1

SKIP CONNECTION

Allows information to bypass
interaction with the weights



Other Architectures: ResNets

Scale shared
across matrix

di-1

di-1

SKIP CONNECTION

Allows information to bypass
interaction with the weights



Other Architectures: ResNets

1§

e

Bayesian shrinkage can
control the effective
depth of the network



Other Architectures: ResNets

1§

e

Bayesian shrinkage can
control the effective
depth of the network

Wiiin N(O»}’lz ) v~ p(7)



Other Architectures: ResNets

1§

—d

Bayesian shrinkage can
control the effective
depth of the network

Wiii™ N(O»Tizylz) v~ py) 7~ p(r)



Other Architectures: ConvNet
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Other Architectures: LSTM
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Tuning the Prior: Type || MLE
p(W; y)



Tuning the Prior: Type || MLE
p(W; y)

p(ylxw)



Tuning the Prior: Type || MLE
p(W; y)

p(ylx;w) =J p(y | x, W) p(W;y) dW
W



Tuning the Prior: Type || MLE
p(W; y)

p(ylxw)=| plylx, W) p(W;y) dW
W

Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning

Alexander Immer 2 Matthias Bauer "3 Vincent Fortuin! Gunnar Riitsch !? Mohammad Emtiyaz Khan?




summary

® Normal priors: easy to implement,
correspond to Gaussian process Iin
the infinite limit.

® Hierarchical priors: good for inducing
structure and heavy-tails.

® Discrete priors: efficient but hard to
implement.



[Lee, 2004]
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Survey of Neural Network Priors
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Having caverad the hasics of Bayesian NNs and strategies for inferring their posterior. |
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Vincent Forluin
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Raobinsor [2001], which is now considerzbly out of date Thus, in this chaprer | survey th Ziirich, Swizerland
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1sting work on NN priors, some of which was performed in the carly days of Bayesian NN

therefore also discussec by Robinson |2001). However, mast of the werk is recent, scme hy

hean concuctad concurrently with my own work to he presented In the coming chapters ABSTRACT

While the choice of prier is one of the most critical parts of the Bayesian infer-
NNs have been zpplled to 2 myriad of different problems over the past thirty years, and} ence workflow, recent Bayesian deep leaming models have often fallen back on
vague priors, such as standard Gaussians. In this review, we highlight the im-
portance of prior choices far Dayesian deep learning and present an overview of
different priors that have heen propased for (deep) Gaussian processes, variational
antoencodders, and Bayesian neural netwarks. We alsa outline different methods

. ' of learming priars for these models from data, We hope to motivate practitioness
[ N al | S n I C k 20 1 8] taticrally traetable model that is fully 4l 10 Bayesian deep learning o think more curelully about the prior specificaton [or
) ther models amnd (o provide them with some inspimataan in s repard.

of course makes it impossible to dizcuss every prior ever used for a NN, Instead, | attem
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functions (such as all continpous functions
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Non-identifiability
h, = f(W1,1X)
h, = f(Wsz)

A\

y = W, 1hy + wy,h,



Non-identifiability
h, = f(W1,1X)
h, = f(Wsz)

A\

y = W, 1hy + wy,h,



Non-identifiability
h, = f(W1,1X)
h, = f(Wsz)

A\

y = W, 1hy + wy,h,



Non-identifiability

® Permutation invariance.

® Scale invariance for RelLUs:

ReLU(x) = (1/a) - ReLU(ax - x), Va > 0



Conjugacy”

Not In general...



Conjugacy”
Not In general...

But sometimes for the last layer:

log N (y\x,Wl, ...,WL) =

(Y h,_ 1WL)

200



Conjugacy”
Not in general...

But sometimes for the last layer.

‘neural linear moael”

2
200 (Y n, IWL)



MAP Estimation
p (Wl, ...,WLly,x) X

L
logp (y | X, Wi, ...,WL) + 2 log p(W))
=1



MAP Estimation

p (Wl,...,WLly,x) X

L
logp (y [, Wy, ... W,) + ) log p(W))
For normal priors

—2 HWZH§+const.
201



MAP Estimation

p (Wl,...,WL\y,x) X

Equivalent to weight decay

For normal priors

—2 HWlH%+const.
201



MAP Estimation

Caution: MAP estimates have very
different characteristics than the true
posterior (e.q. sparsity)

On Bayesian classification with Laplace priors

Ata Kaban

School af Computer Science, The University of Birmingham, Bivrminghamn Bi3 2TT, UK

Reccived 27 February 2006; received 1n revised form 20 November 2006
Available online 28 Fehruary 2007

Communicated by M. Singh




Markov Chain Monte Carlo (MCMC)




Markov Chain Monte Carlo (MCMC)

l A :
p (Wi oos Wilysx) m = Y8 [wm, ...,WL,S]



nitialize wP

For t=1 to I



nitialize wP

For t=1to I
Sample u ~ Uniform(0,1)



nitialize wP

For t=1to I
Sample u ~ Uniform(0,1)

Sample  w* ~ g(w*|wi™1)



nitialize wP

For t=1to I
Sample u ~ Uniform(0,1)

Sample  w* ~ g(w*|wi™1)

o {1 p(y, W | %) q(w'™! | w) }

" p(y, wi=l]x) q(w* | wi=1)



nitialize wP

For t=1to I
Sample u ~ Uniform(0,1)

Sample  w* ~ g(w*|wi™1)

o {1 p(y, W | %) q(w'™! | w) }

" p(y, wi=l]x) q(w* | wi=1)



Hamiltonian Monte Carlo (HMC)

Generate proposal by iterating:
(assuming the identity matrix for the mass)

vt =y 4 aV log p(W" |y, x)

with = w4+ - v
where (& and @' are step sizes and y0 ~ N(O,1)

96



Hamiltonian Monte Carlo (HMC)

Generate proposal by iterating:
(assuming the identity matrix for the mass)

vt =y 4 aV log p(W" |y, x)

with = w4+ - v
where (& and @' are step sizes and y0 ~ N(O,1)

Propose: W* = w"

97



Hamiltonian Monte Carlo (HMC)

What Are Bayesian Neural Network Posteriors Really Like?

Pavel Izmailov Sharad Vikram Matthew D. Hoffman Andrew Gordon Wilson
New York University Google Research Google Research New York University

Computation done
on 512 TPUs

98



Hamiltonian Monte Carlo (HMC)

What Are Bayesian Neural Network P

Pavel Izmailov Sharad Vikram Matthew D. Hof
New York University Google Research Google Resean

Computation done
on 512 TPUs

—1.3 —1 —0.7 —-04 -04
0 x 100



HMC to Langevin Dynamics

One step iteration of HMC:

1 1

wi=wl+a' v
=w'+ o' (anlog (W |y, x) + vO)

100



HMC to Langevin Dynamics

One step iteration of HMC:

1 1

wi=wl+a' v
=w'+ o' (anlog (W |y, x) + vO)

Langevin Dynamics:

Wm+1 — W'+ " - leOg p(wm ‘ Y, X) 4+ ¢

v ~ N(O, ¢€)

101



. angevin Dynamics

Wm

L=w"+a” -V, logp(W"|y,x)+ ¥

v ~ N(O, €)

® “Adjusted": Run accept-reject step

® “Unadjusted": Always accept proposal

® Can also use stochastic gradients

102



MCMC for ResNet-20 on CIFAR-10

SGMCMC
HMC SGHMC SGHMC
METRIC (ReFrencg) S0P SGHMC CLR CLR-PREC

89.64 839.32 89.38 89.63 87.46
ACCURACY +0.25 +0.23 +0.32 +0.37 +0.21
94.01 91.54 91.98 92.67 90.96
AGREEMENT +0.25 +0.15 +0.35 +0.52 +0.24
0.074 0.110 0.109 0.099 0.111
TOTAL VAR +0.003 +0.001 +0.001 +0.0086 +0.002

103



Variational Inference

D (Wl,...,WLly,x) ~ q (Wl, ...,WL;¢)

X9

Exact Posterior
Approximation

Image from Blei et al., “Variational Inference: A Review for Statisticians,” JASA 2017



We usually need to assume some degree
of factorization.



We usually need to assume some degree
of factorization.

Over layers:

q (W, ... Wii¢) = [ |a (W)

[=1



We usually need to assume some degree
of factorization.

Over layers: /
q (Wi Wiig) = [ [a(Wi)
=1

Over weights (“mean fie\d”)

= HHq Wia> ¢ld

[=1 d=1



Normals are common, for instance.

Over layers: ’
a(Wp. ... Wiigp) = | N (n. Z))
=1

Over weights (“mean fie\d”)

= HHN (ﬂzd»"zd)

[=1 d=1



Optimization Objective

h* = argmin¢ ) [q (W;qb) || p (w\y,X)]




Optimization Objective

= argmin, KLD [q (w: ) |1p (wly.x)]



Optimization Objective

= argmin, KLD [q (w: ) |1p (wly.x)]

q(w;¢)

dw
p (WY, x)

= argmin¢ J g (w;¢) log



Optimization Objective

KLD [q (w;cb)HP(W\y,X)] =



Optimization Objective

KLD [q (w;cb)HP(W\y,X)] =

= [—log p (y | X, w)]+

KLD [q(w; )| | p(w)] + const.



Optimization Objective

KLD [q (w;cb)HP(W\y,X)] =

= [—log P (y | X, w)]+

KLD [q(w; )| | p(w)] + const.



Reparameterization Irick

= [—log D (y | X, w)]



Reparameterization Irick

= [—logp (y\x,w)]

— F, [_]()g p (y|x, w = g(; cb))]



Reparameterization Irick

~qy [—log P (¥ X’W)]

— F, [_10g p (y|x, w = g(; cb))]

1
NEZ—logp(y\X,W=g(ﬁS;¢))



0
9¢

- [—logp (y\x,w)]

p (y 1%, W = g $))
Z—log



9
0 ¢

= [—logp (y\x,w)]

__Z—Ing y|x,w =g )

Blundell et al., 2015

‘Bayes by Backprop”



f q(w; @) = N(u,0):

w=g@¢)=pu+o-i, n~NQO,I)



f q(w; @) = N(u,0):



f q(w; @) = N(u,0):

Or for a general q:

W = CDF_'(#; ¢), n ~ Uniform(0,1)



MCMC for ResNet-20 on CIFAR-10

SGMCMC
HMC SGHMC SGHMC
METRIC (REFERENCE) MFEVI SGLD SGHMC CLR CLR-PREC

89.64 860.45 39.32 89.38 89.63 87.46
ACCURACY +0.25 +0.27  +0.23 +0.32 +0.37 +0.21

94.01 88.75 91.54 91.98 92.67 90.96
AGREEMENT +0.25 +0.24 +0.15 +0.35 +0.52 +0.24

0.074 0.136 0.110 0.109 0.099 0.111
TOTAL VAR +0.003 +0.000  +0.001 +0.001 +0.0086 +0.002
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| aplace Approximation

p (WY, x)

~ N (Wyaps H ' (Wypiap))



| aplace Approximation

p (WY, x)

~ N (Wpaps H ' (Wyiap))

N 2
_ 0“log p(y,,w|Xx,)
Fiw) = — 7 108U WIX)
2
= oW



Laplace Approximation

find Wy ap

Images from Alexander Immer: https://twitter.com/alimmer/status/1454057890864566272



Laplace Approximation

find Wyap N (Wpaps H'(Wpap))

Images from Alexander Immer: https://twitter.com/alimmer/status/1454057890864566272



| aplace Approximation

® Pro: can apply to a pre-trained model by
assuming parameters are at the ‘'MAP

® Cor

- Hesslan

atrix can be numerically

UnNs

table, need-
ow-rank, diagonal).

0 assume structure (e.g.



summary

® Conjugacy for last layer (sometimes)

® MCMC is possible but will require
approximations

® Variational inference is practical but

usually has inferior performance
(compared to MCMC).



